Characterization of Jovian Plasma-Embedded Dust Particles
نویسنده
چکیده
As the data from space missions and laboratories improve, a research domain combining plasmas and charged dust is gaining in prominence. Our solar system provides many natural laboratories such as planetary rings, comet comae and tails, ejecta clouds around moons and asteroids, and Earth’s noctilucent clouds for which to closely study plasma-embedded cosmic dust. One natural laboratory to study electromagnetically-controlled cosmic dust has been provided by the Jovian dust streams and the data from the instruments which were on board the Galileo spacecraft. Given the prodigious quantity of dust poured into the Jovian magnetosphere by Io and its volcanoes resulting in the dust streams, the possibility of dusty plasma conditions exist. This paper characterizes the main parameters for those interested in studying dust embedded in a plasma with a focus on the Jupiter environment. I show how to distinguish between dust-in-plasma and dusty-plasma and how the Havnes parameter P can be used to support or negate the possibility of collective behavior of the dusty plasma. The result of applying these tools to the Jovian dust streams reveals mostly dust-in-plasma behavior. In the orbits displaying the highest dust stream fluxes, portions of orbits E4, G7, G8, C21 satisfy the minimum requirements for a dusty plasma. However, the P parameter demonstrates that these mild dusty plasma conditions do not lead to collective behavior of the dust stream particles.
منابع مشابه
Jovian dust streams: Probes of the Io plasma torus
Jupiter was discovered to be a source of high speed dust particles by the Ulysses spacecraft in 1992. These dust particles originate from the volcanic plumes on Io. They collect electrostatic charges from the plasma environment, gain energy from the co-rotating electric field of the magnetosphere, and leave Jupiter with escape speeds over 200 kms. The dust streams were also observed by the Gali...
متن کاملar X iv : a st ro - p h / 02 06 05 9 v 1 4 J un 2 00 2 1 IO REVEALED IN THE JOVIAN DUST STREAMS
The Jovian dust streams are high-speed bursts of submicron-sized particles traveling in the same direction from a source in the Jovian system. Since their discovery in 1992, they have been observed by three spacecraft: Ulysses, Galileo and Cassini. The source of the Jovian dust streams is dust from Io’s volcanoes. The charged and traveling dust stream particles have particular signatures in fre...
متن کاملJovian Dust Streams: A monitor of Io’s volcanic plume activity
Streams of high speed dust particles originate from Jupiter’s innermost Galilean moon Io. After release from Io, the particles collect electric charges in the Io plasma torus, gain energy from the co-rotating electric field of Jupiter’s magnetosphere, and leave the Jovian system into interplanetary space with escape speeds over 200 km s. Galileo, which was the first orbiter spacecraft of Jupite...
متن کاملObservations of Electromagnetically Coupled Dust in the Jovian Magnetosphere
We report on dust measurements obtained during the seventh orbit of the Galileo spacecraft about Jupiter. The most prominent features observed are highly time variable dust streams recorded throughout the Jovian system. The impact rate varied by more than an order of magnitude with a 5 and 10 hour periodicity, which shows a correlation with Galileo’s position relative to the Jovian magnetic fie...
متن کاملM ar 1 99 9 Analysis of the sensor characteristics of the Galileo dust detector with collimated Jovian dust stream particles
The Dust Detector System onboard Galileo records dust impacts in the Jupiter system. Impact events are classified into four quality classes. Class 3 – our highest quality class – has always been noise-free and, therefore, contains only true dust impacts. Depending on the noise environment, class 2 are dust impacts or noise. Within 20 R J from Jupiter (Jupiter radius, R J = 71, 492 km) class 2 s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006